丁香婷婷激情四射|经典成人无码播放|欧美性大战久久久久久久安居码|日韩中文字幕大全|加勒比久久高清视频|av在线最新地址|日本少妇自慰喷水|在线天堂国产免费一区视频社区在线|色欲蜜臀一区二区|偷拍女厕一区二区亚瑟

歡迎訪問漢海網,帶你進入知識的海洋!

必修五數學第二章知識點

天下 分享 時間: 瀏覽:0

學習數學的好習慣之一是建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。下面是小編整理的必修五數學第二章知識點,僅供參考希望能夠幫助到大家。

必修五數學第二章知識點

一、排列組合與二項式定理知識點

1.計數原理知識點

①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分類)

2. 排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!

Cnm = n!/(n-m)!m!

Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素. 以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題) 間接法和去雜法等等

在求解排列與組合應用問題時,應注意:

(1)把具體問題轉化或歸結為排列或組合問題;

(2)通過分析確定運用分類計數原理還是分步計數原理;

(3)分析題目條件,避免“選取”時重復和遺漏;

(4)列出式子計算和作答.

經常運用的數學思想是:

①分類討論思想;②轉化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m

最大二項式系數在中間。(要注意n為奇數還是偶數,答案是中間一項還是中間兩項)

所有二項式系數的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n

奇數項二項式系數的和=偶數項而是系數的和

Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1

③通項為第r+1項: Tr+1= Cnran-rbr 作用:處理與指定項、特定項、常數項、有理項等有關問題。

5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理并且結合放縮法證明與指數有關的不等式。

6.注意二項式系數與項的系數(字母項的系數,指定項的系數等,指運算結果的系數)的區(qū)別,在求某幾項的系數的和時注意賦值法的應用。

等差、等比數列的結論

1、等差數列{an}的任意連續(xù)m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。

2、等差數列{an}中,若m+n=p+q,則 am+an=ap+aq

3、等比數列{an}中,若m+n=p+q,則am·an=ap·aq

4、等比數列{an}的任意連續(xù)m項的和構成的'數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。

5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。

6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列

7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。

8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。

9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d

10、三個數成等比數列的設法:a/q,a,aq;

數列基本公式:

1、一般數列的通項an與前n項和Sn的關系:an= S1(n-1)或Sn-Sn-1(n>2或n=2)

2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。

3、等差數列的前n項和公式:Sn=na1+[n(n-1)/2]d

Sn=n(a1+a2)/2

Sn=nan-[n(n-1)/2]d

當d≠0時,Sn是關于n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。

4、等比數列的通項公式: an= a1 qn-1 an= ak qn-k(其中a1為首項、ak為已知的第k項,an≠0)

如何快速學好數學

一 適當多做題,養(yǎng)成良好的解題習慣。

要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。

對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。

二、調整心態(tài),正確對待考試。

首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。

調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。

數學三角函數知識點

1.終邊與終邊相同(的終邊在終邊所在射線上).

2.弧長公式:,扇形面積公式:1弧度(1rad).

3.三角函數符號特征是:一是全正、二正弦正、三是切正、四余弦正.

4.三角函數線的特征是:正弦線“站在軸上(起點在 軸上)”、余弦線“躺在軸上(起點是原點)”、正切線“站在點 處(起點是 )”.務必重視“三角函數值的大小與單位圓上相應點的坐標之間的關系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務必記?。簡挝粓A中角終邊的變化與值的大小變化的關系為銳角

5.三角函數同角關系中,平方關系的運用中,務必重視“根據已知角的范圍和三角函數的取值,精確確定角的范圍,并進行定號”;

6.三角函數誘導公式的本質是:奇變偶不變,符號看象限.

7.三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是“角的變換”!

角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換.

8.三角函數性質、圖像及其變換:

(1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性

注意:正切函數、余切函數的定義域;絕對值對三角函數周期性的影響:一般說來,某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變.既為周期函數又是偶函數的函數自變量加絕對值,其周期性不變;其他不定.如 的周期都是,但的周期為,y=|tanx|的周期不變,問函數y=cos|x|,,y=cos|x|是周期函數嗎?

(2)三角函數圖像及其幾何性質:

(3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換.

(4)三角函數圖像的作法:三角函數線法、五點法(五點橫坐標成等差數列)和變換法.

9.三角形中的三角函數:

(1)內角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余.銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方.

(2)正弦定理:(R為三角形外接圓的半徑).

(3)余弦定理:常選用余弦定理鑒定三角形的類型.

必修五數學第二章知識點相關文章:

★ 高二數學必修五知識點總結歸納五篇分享

★ 高二數學必修五知識點總結歸納5篇

★ 精選高二數學必修五知識點歸納三篇

★ 高一數學必修五知識點總結歸納

★ 2020高二數學必修五重點知識點精選歸納5篇分享

★ 高一年級數學必修五知識點最新歸納2021

★ 高二數學必修五知識點歸納大全5篇

★ 高二數學必修五知識點總結歸納五篇

★ 高二數學必修五知識點精選總結5篇分享

★ 高二數學必修五知識點難點精選【五篇】

本站部分文章來自網絡或用戶投稿。涉及到的言論觀點不代表本站立場。閱讀前請查看【免責聲明】發(fā)布者:天下,如若本篇文章侵犯了原著者的合法權益,可聯(lián)系我們進行處理。本文鏈接:http://m.256680.cn/xkzl/shuxue/28564.html